Projects Portfolio

Recently Funded NSF Projects

Title: Resiliency of Electric Power Networks under Wind Loads and Aging Effects through Risk-Informed Design and Assessment Strategies (CAREER Award-2018)
PI: Alice Alipour, Iowa State University
NSF Program: Engineering for Natural Hazard

Title: Quantifying Wind Hazards on Buildings in Urban Environments (CAREER Award-2018)
PI: Catherine Gorle, Stanford University
NSF Program: Engineering for Natural Hazard

Title: Control of Vortex Breakdown in High-Reynolds Number Rotor Flows with Secondary Vortex Structures (CAREER Award-2018)
PI: Victor Maldonado, University of Texas at San Antonio
NSF Program: Fluid Dynamics, Centers for Research Excellence in S&T
Recently Funded NSF Projects

Title: Downburst Fragility Characterization of Transmission Line Systems Using Experimental and Validated Stochastic Numerical Simulations (Collaborative Research-2018)
PI: Abdollah Shafieezadeh, Ohio State University and Amal Elawady, Florida International University
NSF Program: Engineering for Natural Hazard (ENH)

Title: Telescopic Structural Flood Walls (2018)
PI: Jorge Cueto, Smart Walls Constructions LLC
NSF Program: Small Business Innovation Research (SBIR) Phase II

Title: Model to Full-Scale Validation of Peak Pressure Mechanisms in Buildings that Cause Cladding Failures and Windstorm Damage (2017)
PI: Chris Letchford, Rensselaer Polytechnic Institute
NSF Program: Engineering for Natural Hazard (ENH)

Ongoing NSF Projects

Title: Model to Full-Scale Validation of Peak Pressure Mechanisms in Buildings that Cause Cladding Failures and Windstorm Damage (2017)
PI: Chris Letchford, Rensselaer Polytechnic Institute
NSF Program: Engineering for Natural Hazard (ENH)

Title: Experimentally Validated Stochastic Numerical Framework to Generate Multi-Dimensional Fragilities for Hurricane Resilience Enhancement of Transmission Systems (2016)
PI: Abdollah Shafieezadeh, Ohio State University
NSF Program: Engineering for Natural Hazard (ENH)
Recently Completed NSF Projects

Topic: Load measurements on a highrise building

- Scale: 1:50
- Four pressure tiles
- 200+ pressure taps per tile

Recently Completed NSF Projects

Topic: Hurricane wind loads on a dome structure

- Scale: 1:60
- 380+ pressure taps
Recently Completed NSF Projects

Topic: Performance of construction site cranes under hurricane-force winds

- Scale: 1:50
- 6DOF Load cell
- Suburban vs urban terrain

Examples of Research Capabilities

Topic: Span wire traffic lights performance under extreme winds

Findings: RMS accelerations matched the full-scale measurements, dynamic response mapped using full-spectrum.
Examples of Research Capabilities

Topic: Wind loads on elevated houses in hurricane prone regions

Findings: Strong suction pressures are found on the underside of the building model. Along-wind shear force increases with increasing stilt height.

Examples of Research Capabilities

Topic: Wind-driven rain deposition on low-rise buildings

- Wind-Driven Rain Test of Full-Scale Model
- Large-Scale Model with Rain Gauges
- Water-Injection System for Wind-Driven Rain
Case Studies

Topic: Wind-driven rain deposition on low-rise buildings

Examples of Research Capabilities

Topic: Reynolds number effects on twin box girder long span bridge aerodynamics

Findings: Bare deck section prone to vortex shedding with limited dependence on Re; Vortex mitigation devices effective, particularly at lower Re regime, in inhibiting vortex shedding.
Examples of Research Capabilities

Topic: Wind induced dynamic and aeroelastic effects on traffic signs

Findings: Higher depth ratios could reduce drag force co-eff.; However, VMS with depth ratios greater than 0.5 and low natural frequency could be subject to galloping instability.

Examples of Research Capabilities

Topic: Large-scale (1:2) testing on wind uplift of roof pavers

Findings: The net uplift force and moment coefficients are sensitive to the resolution and layout of the pressure taps.
Examples of Research Capabilities

Topic: Full-scale testing on wind uplift of roof pavers

Findings: AMPS can reduce wind loads by changing the flow structure, disrupting conical vortices; Simultaneous production of wind (green) energy to combat power outages and supplement grid power.

Patented: US 2015/0345472 A1
Examples of Research Capabilities

Topic: Full-scale testing of a precast concrete supertile roofing system for hurricane damage mitigation (US Patent)

Findings: A new composite roofing system, which consists of large precast concrete structural panels designed to replicate the architectural shape of high-profile roof tiles.

Examples of Research Capabilities

Topic: Progressive failure studies of residential houses towards performance based hurricane engineering

Findings: Roof sheathing failure occurred at wind speed of ~ 120 mph; The roof sheathing started vibrating, wind was able to leak and amplify the internal pressure leading to failure; Test data will be used to calibrate a FEM technique (at Louisiana State University) for wood structures.
Title: Estimation of wind effects on roof tiles with an emphasis pressure equalization across the surface of the tiles (external and cavity pressures)

Findings: In most tiles, pressure equalization occurs between the external and underneath pressures. However, this was not true for the case of eave tiles for wind direction normal to the eave. The results demonstrate that pressure adjustment factor for codes should consider the location of the tiles on roof.

Examples of Research Capabilities

Topic: PV system wind-induced loads and vibrations

Rigid model (load cells, pressure taps)

Flexible (load cells, accelerometers)

Findings: Net design wind pressure and force coefficients. Codification of experimental data.
Findings: Significant wind-induced vibration in systems with much higher natural frequency (~10-12Hz) than the ≤1 Hz criterion in the ASCE 7 for categorizing dynamically wind sensitive structures.

Topic: PV system wind-induced loads and vibrations

Case Studies

Topic: Wind-driven rain intrusion on low-rise buildings

| No-damage (window seal crack, 5% roof cover removal) | Minor damage (2 broken windows, 10% roof sheathing and 15% roof cover removal) | Moderate damage (4 broken windows, 30% roof sheathing and 35% roof cover removal) |

No images provided for case studies.
Case Studies

Topic: Wind-driven rain intrusion on low-rise buildings

- Internal walls covered with dried absorbent pads
- Remove and weight the wet pads after each test
- Take thermographic pictures
- Wind direction
- Percentage of water absorption
- Internal water propagation

Findings: Internal propagation of rain water into walls and floors.

Examples of Research Capabilities

Topic: Standing seam metal roof testing

- Vertical-Leg Standing Seam Roof
- Trapezoidal Standing Seam Roof
Examples of Research Capabilities

Topic: Standing seam metal roof testing

Findings: Roof geometric details and edge conditions can significantly affect peak pressures on roofs.

Examples of Research Capabilities

Topic: Standing seam metal roof testing

Findings: Considerably higher suctions with larger non-uniformity for trapezoidal roof; The panel vibrations in the trapezoidal roofs crept into the panel-ribs causing high deflection and failure.
Examples of Research Capabilities

Topic: Wind loads on glass railings of residential mid-rise buildings

Findings: Balconies change flow pattern (and so pressure distribution) around the building.
Q&A Session